Detection for RT-03f at Cambridge University

Marcus Tomalin, Sue Tranter, Phil Woodland & the CU-HTK STT Team

13th November

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Presentation Overview

- Overview of the CUED CTS SU-Detection System.
- The Prosodic Feature Model.
- The Slash Unit Language Models.
- The Decoder.
- Key Results.
- Scoring Tools.
- Training Data and SU %Err.
- Conclusions and Future Plans.

CTS SU-Detection System Overview

Figure 1: SU-Detection System

RT-03f Workshop 13th November 2003

2

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Output

CU-HTK CTS STT 187×RT System for RT-03s Eval:

- Automatic Segmentation
- Multi-pass System
- MPE Training
- **HLDA Transforms**
- SAT models
- SPron models
- Adaptation and System Combination

For details see:

Woodland et al. 'CU-HTK STT System for RT-03', Rich Transcription Workshop May 2003

retained) used as input to MDE system. CU-HTK CTS STT 187imesRT system output (with optionally deletable tokens

The Prosodic Feature Model

The Prosodic Features (PFs):

Prosodic Feature	Description
Pause_Length	the pause length at the end of the word
Duration	the duration from the previous pause
Avg_F0_L	the mean of the good F0 values† in left window
Avg_F0_R	the mean of the good F0 values in right window
Avg_F0_ratio	Avg_F0_L / Avg_F0_R
Cnt_F0_L	the number of good F0s in left window
Cnt_F0_R	the number of good F0s in right window
Eng_L	the RMS energy in left window
Eng_R	the RMS energy in right window
Eng_ratio	Eng_L / Eng_R

†: $50Hz \le good F0 values \le 400Hz$

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

4

Tomalin et al.: SU Detection for RT-03f at Cambridge University

The Prosodic Feature Model

Five SU sub-types defined:

- SU_S: statement SU boundary
- SU_Q: question SU boundary
- SU_I: incomplete SU boundary
- SU_B: backchannel SU boundary
- SU_N: no SU boundary

Steps in the PFM construction process:

- Convert training data into word sequences.
- Classify each word into one of the above SU sub-types.
- Obtain forced alignments for words in each segment.
 Extract PF info using word start/end times.
- C V-1: --:
- Cross-Validation.
- Construct CART decision tree using PFs and SU sub-type classification.

RT-03f Workshop 13th November 2003

The Prosodic Feature Model

397 (183 terminal)	752,938	all training data
336 (170 terminal)	152,737	SRI+ meteer-mapped V5 data
380 (153 terminal)	600,201	all LDC data
N/A	232,067	LDC train-3rd-third data
N/A	80,683	LDC train-2nd-third data
N/A	152,737	LDC train-1st-third data
N/A	94,765	LDC train-batch1-meteer40 data
N/A	12,124	LDC train-dryrun
N/A	27,825	LDC train-simple-pilot
Num PFM Vecs Num Tree Nodes	Num PFM Vecs	Training Data

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

6

Tomalin et al.: SU Detection for RT-03f at Cambridge University

The Slash Unit Language Models

Insert the required SU token after every word in the training data:

```
SU_I OKAY SU_S ...
                              \vee
                              > OKAY SU_S ARE WE READY SU_Q I THINK WE SHOULD GIVE
 < /s >
```

Various SULMs built using standard LM tools:

- N-gram SULMs (i.e., tg = 3gram, fg = 4gram).
- Class-based SULMs (i.e., cl40-tg = 40 class tg).
- Interpolated SULMs (i.e., tg*cl40-tg = interpolated tg and cl40-tg).
- Perplexities (PPs) calculated using the dev03f test data.
- Interpolation Weights (IWs) calculated using the dev03f test data

The Slash Unit Language Models

Two different types of stream information for SULM interpolation:

- ST_T: obtain stream info for all tokens in training data.
- ST_S: obtain stream info only for SU tokens in training data.

ST_T and ST_S give different PPs and IWs.

Interpolating a tg, a cl40-tg and a cl40-fg:

Stream Type 7	Tok PP	Tok PP SU PP	IWs	SU Err
T_TS	106	A/N	$N/A \mid \sim 0.7, \sim 0.2, \sim 0.1$	46.15
ST_S	N/A	6.6	6.6 \sim 0.5, \sim 0.2, \sim 0.3	45.88

- PFM and SULMs trained on all LDC and meteer-mapped V5 data.
- The decoder used posterior decoding.
- Systems tested using dev03f test data.
- Scores obtained using su-eval-v15.pl with the '-w -W -t 1.00' settings

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

00

Tomalin et al.: SU Detection for RT-03f at Cambridge University

The Slash Unit Language Models

Some SULM results for the dev03f test set using su-eval-v15.pl:

System	SU PP	IWs	%Del	%Ins	%Err
pfm+tg	7.3	N/A	32.0	16.4	48.4
pfm+fg	7.7	N/A	33.6	15.8	49.4
pfm+cl40-tg	7.6	A/N	33.5	17.3	50.8
pfm+cl40-fg	7.9	N/A	28.9	26.9	55.8
pfm+(tg*cl40-tg)	6.7	\sim 0.5, \sim 0.5	31.1	14.8	45.9
pfm+(tg*cl40-fg)	6.7	$\sim \! 0.6, \sim \! 0.4$	30.3	16.2	46.5
	6.6	$\sim 0.5, \sim 0.2, \sim 0.3$	31.8	14.1	45.9

- All SULMs were trained using LDC and meteer-mapped V5 training data.
- The PFM was trained using LDC and meteer-mapped V5 training data.
- The decoder used posterior decoding
- Systems tested using dev03f test data.
- Scores obtained using su-eval-v15.pl with the '-w -W -t 1.00' settings

The Decoder

The SU Decoder: lattice-based combination of the PFM and SULM scores.

Figure 2: Initial SU Decoder lattice

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

10

Tomalin et al.: SU Detection for RT-03f at Cambridge University

The Decoder

Comparing two decoding strategies:

- VITERBI-1-BEST
- Expand initial lattices using SULM.
- Select hypothesis with highest likelihood.
- POSTDEC-1-BEST
- Expand initial lattices using SULM.
- Estimate word-level posterior probs.
- Sum the posteriors of the SU subtypes
- Generate confusion network.
- Select hypothesis with highest posterior prob.

The Decoder

Su-Detection System:

- PFM
- Interpolated tg, cl40-tg and cl40-fg SULM
- acoustic scale factor = 2.0
- \bullet grammar scale factor = 1.0
- insertion penalty = 0.0

Experimental Set-up:

- Training data: LDC and meteer-mapped V5 data
- Test Data: dev03f test set
- Scores obtained using su-eval-v15.pl with the '-w -W -t 1.00' settings

Decoding Method	%Del	%Ins	%Err
VITERBI-1-BEST	31.36	15.09	46.45
POSTDEC-1-BEST	31.75	14.12	45.88

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

12

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Key Results: Dec02-Oct03

Three CTS SU-detection Systems:

- Dec02-Sys: simple rule-based system used for Dec 2002 dryrun.
- Post-RT-03s-Sys:
- TB3 data (c.90 hrs).
- Side-based forced alignments (i.e., no segment info in training data)
- PFM (1456 nodes [729 terminal]), 10 prosodic features.
- SULM (bg).

• RT-03f-Sys:

- LDC data and meteer-mapped V5 data (c.40 hrs).
- Segment info in training data used when generating forced alignments.
- PFM (397 nodes [183 terminal]), 10 prosodic features.
- Interpolated SULMs (tg, cl40-tg, cl40-fg).
- IWs obtained from SU stream info.
- Posterior decoding.

Key CTS Results: Dec02-Oct03

System	%Del	%Ins	%Err
Dec02-Sys	58.30	19.00	77.30
Post-RT-03s-Sys	45.60	16.99	62.59
RT-03f-Sys	31.75	14.12	45.88

All systems were tested using the dev03f test set.

All scores obtained using su-eval-v15.pl with the '-w -W -t 1.00' settings.

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

14

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Key CTS Results: Dec02-Oct03

The Ref condition task:

- Ref files segmented automatically.
- Missing dictionary entries added manually.
- Word times converted back to word times in Ref files.

System	%Err (Dev03f)	%Err (Eval 03 f)
RT-03f-Sys Sys	45.88	46.04
RT-03f-Sys Ref	34.86	34.59

All scores obtained using su-eval-v15.pl with the '-w -W -t 1.00' settings.

System	%Err (Dev 03 f)	%Err (Eval 03 f)
RT-03f-Sys Sys	49.52	50.29
RT-03f-Sys Ref	34.96	34.62

All scores obtained using rteval-v2.3.pl.

Scoring Tools

- su-eval-v12.pl and rteval-v2.3.pl used for system development.
- su-eval-v15.pl and rteval-v2.3.pl used to score RT-03f eval submissions.

Results obtained for the following systems:

Code	System
В	$pfm + (tg^* cl40-fg)$
b	pfm+(tg*cl40-tg)
С	pfm+fg
d	pfm+tg
е	pfm + (tg + cl40 - fg)
Ť	pfm+(tg*cl40-tg)
0 79	pfm+(tg*cl40-tg*cl40-fg)

All systems used posterior decoding and scores obtained for dev03f test data.

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

16

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Scoring Tools

Comparison of scoring tools for different systems:

Basic trends similar; DEL counts closer than INS counts for most recent versions of tools.

Training Data and SU %Err

CTS training data:

- (1) LDC train-1st-third data (c.10 hrs).
- (2) LDC train-2nd-third data (c.6 hrs).
- (3) LDC train-3rd-third data (c.15 hrs).
- (4) SRI+ meteer-mapped V5 data (c.9 hrs).

Exploring the cumulative effect of training data on SU %Err rate:

- Build PFM and tg SULM using training data set number (1).
- Obtain results for the dev03f test set.
- Add next training data set (i.e., cumulative increase in training data).
- 2. Rebuild PFM and tg SULM.
- 3. Obtain results for the dev03f test set.
- 4. Stop if training data set number = (4), else goto 1.

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

18

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Training Data and SU %Err

The SU %Err rate falls as amount of training data increases:

SU %Err falls at a rate of c.0.25 % (abs) per hour of training data

Conclusions

- Scoring tools still unstable and they have not yet converged
- SU %Err for CTS task reduced from 62.59 to 45.88 since May 03
- Task-specific training data reduces SU %Err at rate of 0.25% (abs) per hour.
- Interpolating SULMs reduces SU %Err (c.2.5% abs).
- Calculating IWs using SU stream info reduces SU %Err (c.0.3% abs).
- Posterior decoding strategy reduces SU %Err (c.0.6% abs).

Cambridge University Engineering Department

RT-03f Workshop 13th November 2003

20

Tomalin et al.: SU Detection for RT-03f at Cambridge University

Future Plans

- Continue to provide feedback concerning tools, task definitions etc.
- Develop BN system
- Explore system combination strategies
- Develop PFMs (i.e., experiment with other kinds of features).
- Use syntactic parser as post-processing stage (work in progress).
- Consider impact of STT performance upon the SU detection task.